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These notes are intended to introduce students to many of the basic ideas in particle cosmology needed
to begin research. They were written to be accessible to first-year physics students at Harvey Mudd
College, who have taken courses in calculus and calculus-based physics, including special relativity.
Even if you don’t have this background, however, you can skip over the more technical bits and still
get some useful insight into underlying ideas in particle physics. The reader should, however, have
looked through my notes introducing foundational concepts in particle physics.

1 Connecting the Large and Small

Particle physics is the study of the fundamental constituent particles and forces that make up
all matter that we know and understand today. It is predominantly the study of sub-atomic and
sub-nuclear particles like electrons and quarks and the forces that bind them together into more
familiar forms of matter (atoms, molecules, and everything on up). Cosmology is the study of the
origin and structure of the universe as a whole and are therefore concerned with the largest objects
in the Universe: galaxies, galaxy clusters, and so forth.

At face value, these two pursuits appear to be entirely unrelated. One is concerned with sub-
nuclear distance scales < 10−15 m, while the other seeks to understand the universe over distances
of billions of light years (∼ 1025 m). Furthermore, the dynamics of our universe as a whole is driven
by the gravitational interactions between massive objects, while the gravitational force is famously
absent from our current Standard Model of particle physics: this is largely due to the fact that the
gravitational interactions felt between individual elementary particles are utterly negligible compared
to other forces.

However, there is one fact of cosmology that indirectly showcases its link to particle physics: the
ongoing expansion of the universe, which was first observed by Edwin Hubble in 1929. We observe
that space is expanding, meaning that distant objects in all directions appear to be getting farther
away from us. This is not due to actual motion of these objects, but because lengths themselves are
getting bigger due to the expansion of spacetime.

The converse of the universe’s expansion is that, if we hit the rewind button, the universe was
smaller in the past. We know from thermodynamics that systems tend to heat up under compression,
and at earlier times the energy in the universe was confined to a smaller volume and so the energy
density was higher in the early universe. If we go back as far as we can currently understand, which
is about 14 billion years into the past down to mere seconds after the Big Bang, we find that the
universe used to be compressed into such a small volume and with such a high energy density that
elementary particles were continually bashing into each other at energies exceeding those of our most
powerful particle colliders. Unlike our colliders, which are highly engineered marvels, these collisions
were happening all the time in the early universe. Higher energies in particle collisions allow for the
production of heavier and more exotic forms of matter, and so the sub-atomic and sub-nuclear realm
of elementary particles and their forces is extremely relevant in understanding what was going on in
these very early times. This is the essence of the hot Big Bang theory1.

What’s more is that our current theory of gravity, general relativity, says that the evolution
and expansion of spacetime itself depends on the energy and motions of objects located within

1It is a common misconception that the “Big Bang” refers to the precise beginning of the universe in an energetic
explosion. However, it is more accurately described as the theory hypothesizing that the universe was once in a much
hotter, compressed state and subsequently cooled into the universe we see today. This theory has been extremely
successful at predicting and explaining our earliest observations of the universe, although both theory and observation
become murkier at predicting what happened at ever earlier times. When we refer to times “after the Big Bang”, we
don’t necessarily mean after the start of the universe, but rather the time since the universe entered this very hot,
compressed state. We are ultimately agnostic about what came before.

2



that spacetime. Therefore, the presence and interactions of elementary particles at early times
is not merely a by-product of the universe being in a more dense state, but they actually drove
the expansion of the early universe. Consequently, the particle interactions of the early universe
shape and mould the eventual state of the universe today and leave imprints that we observe via
astrophysical observations. We can therefore use our astrophysical measurements of the universe to
shape our understanding of elementary particle physics (namely, the particles and forces present at
various times in the early universe), while using our knowledge of fundamental particles derived from
lab-based experiments to make predictions of how the universe evolved at early times.

For the most part, this interplay between cosmology and particle physics has been successful at
explaining various observed properties of our universe. As an example, when we take collision rates
known from particle and nuclear physics experiments and apply them to the early universe, we can
make predictions of the relative abundances of hydrogen, helium, and heavier elements in the universe
today. This is the study of Big Bang Nucleosynthesis, and the theoretical predictions agree very
well with measurements of light elemental abundances in the present day. In a similar vein, there is
a flash of light known as the Cosmic Microwave Background originating from the epoch when
free protons and electrons bound into neutral atoms, and we can study particle interactions in the
early universe by making precise observations of this oldest source of light. While we will return to
discussing both of these eras in more detail, these successes tell us that we are on the right track in
applying the knowledge of particle physics that we have uncovered today to the very early universe.

There are, however, several tantalizing mysteries where our current theory of particle physics does
not line up with cosmological and astrophysical observations. Each of these discrepancies suggests
that there are actually new particles and forces in nature that are, as yet, undiscovered in laboratory
studies of elementary particles but which leave a clear imprint on the structure of our universe. I
will discuss a few of them here.

Dark Matter: Since the 1930s, it was noted by astrophysicists by independently determining two
quantities: the amount of visible matter in the universe from stars and gas, and the amount of matter
inside of objects such as galaxies as inferred by their gravitational pull. When these two quantities
are compared, it appears that there is much more matter exerting a gravitational pull inside of
galaxies than can be explained from the visible light. The necessity of dark matter in explaining
astrophysical measurements was put on solid footing in the pioneering work of Vera Rubin and Kent
Ford in the 1960s and 1970s, and since then evidence for dark matter has turned up in astrophysical
and cosmological measurements from a variety of different epochs in the universe’s history. The
problem is that none of the elementary particles we currently know about can account for this dark
matter: it must be something new2!

This is not a small problem either: we now know that there is more than five times more dark
matter than visible matter. The consensus is that this is some new particle beyond the Standard
Model, and may come with its own forces and interactions. It is deeply unsatisfying that we don’t
know what more than 80% of the matter in the universe is, and as particle physicists we want to
think of ways that we can learn more about what this dark matter, beyond that we can’t see it!

The Matter-Antimatter Asymmetry: There are very few problems in physics (or other fields)

2An alternative to the existence of dark matter is that perhaps gravity behaves differently than we expect. Such
theories fall under the general heading of modified gravity. While this is still a possibility, modified gravity theories
have a hard time explaining all of the observations of dark matter (indeed, it is challenging to even understand how
modified gravity theories work at very early times). Most of the astrophysics community accepts the existence of dark
matter, and we will adopt that view here, although work continues on developing viable and compelling theories of
modified gravity as alternatives to dark matter.
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that more directly relate to the question of our existence as the matter-antimatter asymmetry. The
discovery of the positron in 1932 confirmed the earlier theory of Dirac that elementary particles
such as electrons have a corresponding antiparticle that has the same mass and spin but with
opposite electric charge. Indeed, all of the particles in the Standard Model have antiparticles3. But
this immediately raises a very important question: why did we have to wait until 1932 to discover
antimatter when we’ve known about regular old matter since the earliest times? Where are all of the
antiprotons? Anti-hydrogen? Anti-molecules? The only possible explanation is that there existed,
at early times, an excess of matter over antimatter; all the antimatter annihilated away, leaving the
remnant matter that makes up everything in the universe today (including us). Indeed, if there had
not been an excess of matter over antimatter, all of the matter and antimatter would have annihilated
away, leaving. . . nothing.

As we have continued to do studies in particle physics, we have learned that the Standard Model
treats matter and antimatter on almost the same footing, and whatever differences exist are far too
small to explain a universe with as much matter as we see relative to antimatter. It may be that
the universe just started in a state with more matter than antimatter, but this is unlikely in light of
the next cosmological puzzle discussed below. We are therefore left with the conclusion that there
exist new particles and forces in nature that break the symmetry between matter and antimatter in a
more significant way than is true in the Standard Model, allowing an accumulation of excess matter
over antimatter and ultimately our existence.

Cosmic Inflation: There are some features of cosmological observations that are perhaps more
subtle than the first two, but no less surprising. One is that the universe seems extremely isotropic: it
looks the same in every direction. This is maybe not so shocking until you realize that parts of the
universe that we see in polar opposite directions were never in causal contact (meaning that light
from one patch has never reached any other during the entire history of the universe). How is it, then,
that these two different patches of the universe “know” to be the same? In principle, they should
have different temperatures, matter densities, and so on if they don’t know about one another.
Furthermore, the universe on scales we can see appears to be flat, meaning that it is overall not
curved. It is not clear why this is the case.

A theory was developed to explain these known as inflation. Inflation hypothesizes the existence
of a phase of very rapid, exponential expansion of the universe prior to the hot and dense state that
is the subject of the Hot Big Bang theory. Such a period of rapid expansion can solve both of the
above problems: the universe looks the same in all directions because we are looking at one very tiny
piece of the original universe which was rapidly blown up to be the distinct patches we see today,
and so it looks the same in every direction. Also, the rapid expansion tends to cause local patches
of the universe to flatten: consider a balloon when it is mostly deflated and when it is blown up to
its greatest extent, and you can see that the latter is less curved.

Inflation also resolves another important issue: why we exist as objects that are clumped into
planets, stars, and galaxies. If the universe started in a hot, dense, but largely uniform state, we would
expect it to remain in a uniform (but less dense) state as the universe expanded. However, what we
see is that there were tiny regions that were more clumped than others, and gravitational attraction
caused surrounding matter to fall into the clumpier regions, making them ever more clumpy. The
period of inflation is hypothesized to generate tiny wiggles in density due to quantum mechanical
fluctuations that seeded the over-dense regions we see today.

3This includes neutral particles such as the photon, which are their own antiparticles. Neutrons are neutral but
are not their own antiparticles. The reason is that the quarks making up neutrons are electrically charged, and the
antineutrons are made up of antiquarks that have opposite charge to the quarks in neutrons.
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Inflation is also commonly (although not universally) held by cosmologists to be true. If inflation
happened, there has to be a new type of particle that was associated with driving this period of
rapid expansion. This particle is called the inflaton, and just like dark matter there is no inflaton
candidate in the Standard Model4.

In these notes, I will elaborate on the connections between particle physics and cosmology, re-
ferring frequently to the problems of dark matter and the matter-antimatter asymmetry. We will
examine these problems in more detail and use our astrophysical and cosmological observations to
try and pinpoint what classes of particle theories could explain these phenomena. Before we can
do this, however, we need to learn more about the theory of the expanding universe because this is
integral to our discussion of all of the other aspects of particle cosmology.

2 Evolving Spacetime and Our Expanding Universe

2.1 Overview of Gravity and General Relativity

Because of colonialism and globalism, nearly everyone in the world today is raised with a view of
the nature of space and time that is inherited largely from the work of Newton (although there are
indications of this view as early as classical Greece). When Newton formulated the classical laws
of motion, it was a foundational assumption that space and time are distinct quantities and are
absolute. This means that space and time exist universally for all observers, and are a mere passive
stage on which the wonders of physics played out in various ways5. We can see this embedded deeply
in Newton’s second law,

~F (~r) =
d~p(~r)

dt
. (1)

According to Newtonian mechanics, the interesting physics is in how objects respond to applied forces
at various points in space. The coordinate system merely labels where and when in space time the
various applied forces occurred, acting as mere sign posts for the whole spectacle. Newton’s law of
gravitation states that the gravitational force acting on mass M1 due to a mass M2 is

~F (~r) =
GM1M2

r2
r̂, (2)

where r̂ is the unit vector pointing from mass 1 to 2, and G is Newton’s gravitational constant.
The situation began to change with the theory of special relativity. Special relativity tells us that

different observers perceive space and time differently, and that transformations between observers
tend to mix up space and time (hence the fact that moving clocks run slow, moving lengths are
contracted, and leading clocks lag). This tells us that space and time cannot be kept separate, but
must be dealt with together as one spacetime. In special relativity, however, spacetime itself is
still static even though different observers could perceive it differently depending on their relative
motions.

4It has been conjectured that the Higgs field could drive inflation, although in this case it must possess unusual
gravitational interactions.

5It is unfortunately common for students to be taught that absolute, static space and time are“intuitive” and,
consequently, relativity is not. This neglects the fact that, both before Newton and in cultures that had not adopted
Enlightenment worldviews, people had different conceptions of space and time. Even now, people who experience the
world in different ways might have differing opinions on what is intuitive and what is not. I highly recommend the
chapter “Spacetime Isn’t Straight” in Prof. Chanda Prescod-Weinstein’s book The Disordered Cosmos (and, indeed,
the whole book).
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Figure 1: (Left pane) Spacetime is curved in the presence of a massive object such as the Earth. In
general relativity, gravity does not exert a force; rather, objects navigate this curved spacetime by
travelling in as straight lines as possible. The result is an apparent acceleration towards the Earth.
(Right pane) The same thing, but showing only a 2D slice of the curved spacetime and an object
orbiting the Earth. (Image credit: Physics Stack Exchange)

Special relativity does, however, raise questions about the validity of Newton’s theory of gravity.
For starters, special relativity suggests that nothing should travel faster than the speed of light,
c. However, let’s suppose I suddenly change the mass M2. According to Eq. (2), mass M1 should
immediately detect a change in the gravitational force due to the change. However, if M1 and
M2 are very far apart, this suggests that the change has been communicated instantaneously and,
in particular, much faster than speed c! A similar situation exists in electrostatics: however, the
resolution is found by taking into account the dynamics of the electric and magnetic fields in the
presence of moving charges. In particular, the movement of a charge results in the emission of
electromagnetic radiation that travels at a speed c, and it is this change in the field that communicates
the change in potential to a distance point charge. Perhaps there is an analog to the electromagnetic
field that communicates the change to masses in a theory of gravity?

The resolution to these puzzles came with the development of the general theory of relativity
in 1915, which was a brand new way of thinking about gravity. In general relativity, we dispense
entirely with the notion of gravitational force. Instead, in general relativity objects always move in
straight lines: however, what we perceive as a gravitational force is actually the distortion of the
geometry of spacetime itself in the presence of massive objects. Because spacetime curves in the
vicinity of heavy objects (like the Sun), then particles that are trying to move in “straight lines”
appear to be bent around the heavy object into orbits, or else appear to be accelerated into the centre
of a large object (as we experience in “falling towards the Earth”); see Fig. 1. In other words, when
we fall towards the Earth, it is not that there is a physical force acting on us, but that the curvature
of spacetime causes us to drift toward the object as we attempt to move in a straight line. This
malleable, curved spacetime can also be distorted and create waves and ripples which communicate
changes to the mass structure of objects embedded in spacetime.

The development of general relativity is fascinating and there are many deep insights into the
nature of gravity and motion that have been perfected over the past century. We do not have the
time to review all of them here. For our purposes, we can content ourselves with knowing that this
geometric picture of gravity as resulting from a warped and distorted spacetime has been confirmed
in a spectacular way in the intervening years since its proposal. For example, our modern GPS
systems would not work without the corrections resulting from a general relativistic picture of gravity.
Similarly, the detection of gravitational waves was announced in 2016 by the LIGO collaboration after
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a long hunt: these are the tiny ripples in spacetime that communicate changes in particle masses as
motivated by the above analogy with electromagnetism. These are but two of many examples of the
empirical successes of general relativity.

There is, however, one huge change that comes with imagining spacetime as a dynamical, chang-
ing, curving background. In addition to being stretched, spacetime can also expand or contract.
This means that the universe is not some fixed object, but one whose size and other properties are
continually changing. Einstein found this so distasteful that he invented a fudge factor into his equa-
tions that permitted a universe of static size (essentially by tuning attractive and repulsive forces to
keep the universe a fixed size). However, we now know that the universe does indeed expand6.

Without going into the sophisticated mathematics of differential geometry, we cannot cover the
details of how the expansion of spacetime originates from the equations of general relativity. However,
we can say that the key insight of general relativity is that a combination of mass, energy, and
momentum localized to a region causes spacetime in its vicinity to curve and change. We can
therefore tie the rate of the universe’s expansion to the amount of stuff in the universe and how it
moves. This allows us to link the properties of matter with the evolution of the universe and its
expansion. We are specifically interested in the role that elementary particles and their forces play
in this process.

2.2 Characterizing the Universe’s Expansion

What does it mean when we say that the universe is expanding? What we mean is that every point
in space is getting farther away from every other point in space. For example, suppose that
at time t0 we are a distance d0 from a particular distant galaxy. If the universe is expanding, then
at a later time t1 this distance will have changed to a new distance d1. It is useful to think of the
universe as the surface of an inflating balloon: after putting more air into the balloon, every point on
the surface becomes farther away from every other point. However, the key distinction is that with
a balloon, every point is on the two-dimensional surface is expanding away from the centre of the
three-dimensional balloon. With the universe’s expansion, the entire universe is expanding: there is
no point from which we are “expanding away”; in other words, for the balloon analogy to work, we
have to imagine that the surface of the balloon is itsefl the entirety of the universe (see Fig. 2).

The formulation of the expanding universe is due to Friedmann, Lemâıtre, Robertson, and Walker.
We define a scale factor, a(t), that is an increasing function of time7. Distances between two objects
at fixed positions in spacetime8 obey the relation

∆r(t) = a(t) ∆r(t0), (3)

where t0 is some reference time; the distances get larger due to the expansion of spacetime. In other
words, a distance between two points at time t is larger than the distance at time t0 by a factor of
a(t). If you like, we are defining a ruler as specifying the distance between two objects at t0, and
a(t) tells us how that ruler is stretched due to the spacetime expansion9.

6That being said, the “fudge factor”, which we call the cosmological constant, has actually turned out to have
physical significance and is an important part of our current theory of cosmology!

7It is important not to confuse the scale factor, a(t), with the acceleration. Unfortunately, as you progress in physics
you will find that we run out of letters and some have to do double duty!

8By fixed, we mean that the objects do not undergo relative motion in spacetime; they only appear to “move”
because distances in spacetime are themselves changing.

9If you have studied special relativity, you are hopefully wondering what observer we are using to define the time, t,
that characterizes the expansion. This is because special relativity tells us that observers moving with different relative
velocities perceive time differently. In this case, the scale factor equation is derived in a special reference frame in
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Figure 2: Expansion of the universe imagined as occurring on the surface of a balloon that is being
inflated. Everything in the universe is confined to the surface of the balloon, and every point in the
universe is getting farther away from every other point due to the expansion. (Image credit: Eugenio
Bianchi, Carlo Rovelli, Rocky Kolb)

The scale factor tells us how distances between objects change between different times. We may
also be interested in how fast the universe is expanding: if the expansion is incredibly slow, we can
ignore it and treat spacetime as being essentially fixed, whereas if the expansion is fast then we have
to worry about it. The way that we characterize the expansion is through the quantity

H(t) =
ȧ(t)

a(t)
, (4)

where the dot refers to a derivative with respect to time, ȧ ≡ da/dt. H is referred to as the Hubble
rate, named after Edwin Hubble who first provided evidence of the expansion of the universe (indeed,
the universe’s expansion is often referred to as Hubble expansion). Notice that H has units of
(time)−1: we can understand H−1 as the time it takes for the distance between two objects to change
by an amount comparable to its distance at time t. The way we can see that is that if we write the
derivative as ȧ ≈ ∆a/∆t where ∆t is the time it takes the distance to change by a value ∆a, then if
∆a ∼ a(t) we have H ∼ 1/∆t. Right now, the Hubble rate is ∼ 2×10−18 s−1, so we expect distances
in the universe to double in approximately 15 billion years.

The scale factor, a(t), and the Hubble rate, H(t) (as well as the differences between them), will
come up repeatedly in these readings. It’s ok if you don’t completely understand them now, but if
you find yourself very confused you may want to do some more readings about them online before
proceeding.

3 Elementary Particles and the Universe’s Expansion

For much of the Universe’s history, the expansion of the Universe has been due to the energy present
in the matter contained within the Universe. In turn, the expansion of the Universe has profound
effects on the matter in the Universe: it dilutes the matter density and can change the rates of reaction
occurring between particles. This means that, by studying the expansion of the early Universe, we
can learn about the particles present in the Universe at that time. We can also use our knowledge of

which all the matter in the universe looks the same in every direction. We call this the “cosmic rest frame”. A different
observer will see an expansion that is different in time, but they will also perceive that the universe no longer looks the
same in all directions.
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the expansion to understand how the expanding early Universe sets the stage of the planets, stars,
and galaxies we observe today.

In this section, we survey the qualitative effects of the Universe’s expansion on the matter in the
Universe, and use it to construct a history of the Universe as we currently understand it.

3.1 Effects of the Hubble Expansion

Looking at Fig. 2, we see that one effect of the expansion is the dilution of the number density of
particles. Let us for the sake of argument assume that the universe is of finite extent and carries a
number NX of particles of species X. The expansion of the universe does not change the number of
particles contained in the universe as a whole. However, the volume of the universe increases propor-
tional to the cube of the scale factor, a3. Therefore, the number density of particles nX/unit volume
changes due to Hubble expansion according to the relation

nX(t2) = nX(t1)

(
a(t2)

a(t1)

)−3
. (5)

Now, we don’t actually know whether the Universe is finite in extent. However, we can pick an
arbitrary volume at time t1 and track the same patch of space as it blows up according to the Hubble
expansion. This patch is called a comoving volume (because we are looking at a patch whose size
expands at the same rate as the Hubble expansion), and repeat the above arguments: the number
of particles NX inside the comoving patch does not change due to the expansion by definition, but
because the patch gets bigger, the number density nX ≡ NX/V gets smaller.

Why do we care about number density rather than total number? Let’s turn away from particle
physics to something more familiar: high-school chemistry. We know that hydrogen gas is extremely
explosive; it is also found in trace amounts in the atmosphere, but in this form it is too dilute to
actually explode. If, however, we compress the hydrogen gas into a cylinder (or into the Hindenberg
airship), then it becomes extremely explosive. In order to sustain the chemical reaction, the hydrogen
atoms must be present in a sufficiently high number density to have any physical effect.

Similarly, the number densities of particles are very important for chemical, nuclear, and particle-
physics reactions. As the Universe expands, the densities of every species of particle gets lower, and
may drop below the critical threshold that required by certain reactions to proceed. The process by
which reactions cease to occur due to a drop in density from the Hubble expansion is called thermal
freeze-out, and we will look into how this happens in more detail later.

The second effect of the Hubble expansion on particle properties in the early universe is through
the process of redshift, which is a phenomenon that affects the propagation of waves through an
expanding medium. Consider some type of wave (for example, a light wave): one of the defining
characteristics of a wave is its wavelength, or the distance in physical space between two adjacent
peaks in the waveform. If we examine the picture in Fig. 3, we see in the top pane a wave with 5
crests and 5 troughs. When the background space it is in expands, we still have the same number of
peaks and troughs, but distributed over a longer distance. This results in a larger wavelength λ > λ0
in the expanded space. We therefore find that

λ(t2) = λ(t1)

(
a(t2)

a(t1)

)
, (6)

and that wavelengths get longer as spacetime expands. If we consider a visible light wave, larger
wavelengths correspond to redder colours, and so this phenomenon is called redshift. The opposite
phenomenon, coming from the contraction of wavelengths in a shrinking space, is called blueshift.
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Figure 3: A wave of wavelength λ0 gets stretched if the background spacetime surface is stretched.
This results in an increase in the wavelength to λ. Since larger wavelengths are associated with
redder colours of light, this is called redshifting. (Image credit: University of Alberta)

What is the effect of redshift on particle properties? Quantum mechanics tells us that, for a
massless (or relativistic) particle, the energy per particle is proportional to the frequency, ν:

E = 2π~ν, (7)

where ~ = h/2π is the reduced Planck’s constant. This may be familiar to you as the photon energy
as a function of the frequency of light in explaining the photoelectric effect. The frequency and
wavelength are, in turn, related via the wave equation,

λ ν = c, (8)

where c is the speed of the wave (for a relativistic particle, c is the speed of light). We therefore find

E =
2π~c
λ

. (9)

Since λ increases with the expansion of the universe due to redshift, the energy of each relativistic
particle decreases with the expansion of the universe. In other words, relativistic particles like photons
lose energy as the Universe grows older. For example, the light from the cosmic microwave background
is about 10−4 times less energetic now than when it was produced due to the effects of redshift.

We can now combine the effects of dilution and redshift to study the effects of spacetime expansion
on energy density, defined as the total energy per unit volume ρ ≡ E/V . To find the energy density,
we must add the energies of every type of particle present in the universe at that time. It is important
because the gravitational force acts proportionally to the total energy-momentum of particles, and
so the expansion of the universe (which results from gravity) depends on the energy density.

Let us consider a collection of particles of species X, each of which has energy EX . If the particles
are non-relativistic, most of their energy is in their mass, and so EX ≈ MXc

2, which does not ever
change; the mass of a particle is a fundamental invariant property of the particle. We have the energy
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density in species X,

ρX =
NX · EX
volume

(10)

≈ NX ·MXc
2

volume
. (11)

Since the volume scales like a3, and NX and MX are fixed, we have

ρX(t2) = ρX(t1)

(
a(t2)

a(t1)

)−3
(non− relativistic). (12)

We see that the energy density of a non-relativistic species decreases cubically with the expansion of
the universe, and this is due to the dilution of the particle species X: as the universe expands, there
are fewer particles per unit volume, and therefore less energy.

The effects of the expansion for a relativistic particle are somewhat different. The reason is that,
for a relativistic particle, most of its energy is in kinetic energy rather than in the mass. As a result,
there is an additional suppression of the energy due to the redshift, EX ∝ a−1. Combined with the
a3 scaling of the volume, we get:

ρX(t2) = ρX(t1)

(
a(t2)

a(t1)

)−4
(relativistic). (13)

Because the energy density of relativistic particles (also known as the radiation density) is
reduced more severely by the Hubble expansion than the energy density of non-relativistic particles
(also known as the matter density), we find that as more time elapses and the Universe expands
to ever larger sizes, the matter density comes to dominate the total energy in the Universe. This is
illustrated in Fig. 4.

We now summarize the results of this subsection:

1. The expansion of the universe reduces the number density of particles by a factor of a−3 as the
scale factor grows. This is due to the dilution of the number density of particles because of the
increasing volume of spacetime.

2. The expansion of the universe also causes relativistic particles to undergo redshift, reducing
their energy by a factor of a−1. Non-relativistic particles are unaffected because most of their
energy is in mass rather than in the wavelength.

3. The combination of these effects means that the energy density of non-relativistic species scales
like a−3 with the Hubble expansion, while the energy density of relativistic species scales like
a−4.

3.2 The Expanding Universe on Rewind

Today, the Universe consists of clumps of matter (us!), as well as a bath of electromagnetic radiation
called the cosmic microwave background (CMB). The current temperature of this background
is approximately 2.7 K, which means that the average photon has an energy of about 0.235 meV
(milli-electronVolts). Given that the energy required to ionize hydrogen is about 13 eV and most of
the matter in the universe is now made of electrically neutral atoms, there is not really a whole lot
of exciting stuff that the CMB does nowadays.

11



time (y)

⇢
/c

2
(k

g
/m

3
)

Figure 4: The expansion of the Universe reduces the energy density of relativistic particles (also
known as the radiation density) faster than the energy density of non-relativistic particles (also
know as the matter density). As a result, the effects of radiation dominated the Universe in the
earliest times after the Big Bang, whereas the Hubble expansion reduces its relative importance over
time until the non-relativistic matter comes to dominate (Image credit: Nanjing University).

However, we can take the existence of the CMB and the fact that the Universe is expanding to
draw some very important conclusions about the history of the Universe. Indeed, all we have to do
is hit rewind and go backwards to imagine what happened at earlier times. If we do this, we find
that the Universe contracts as go further into the past. This contraction is precisely the opposite of
the Hubble expansion, and again has two important effects:

• As spacetime contracts, particles are compressed into a smaller volume of space; this makes
them more likely to interact with one another.

• As spacetime contracts, any radiation undergoes blueshift, meaning that the energies are in-
creased by the fact that wavelengths are condensed with the contracting spacetime.

Therefore, at earlier times, the Universe was a hotter, denser place than it is today. This means that
many particle reactions that don’t really occur in nature today due to lack of energy were happening
abundantly at early times.

3.2.1 The Ionization of Hydrogen

As I mentioned earlier, the energy required to kick an electron out of a hydrogen atom is approx-
imately 13 eV. This means that, as we rewind in our history of the Universe, the photons in the
CMB are blueshifted until their energies are about 10 eV. At this point, each photon in the CMB
can kick out an electron from an atom, and so instead of finding neutral atoms in the Universe, we
find freely floating positive nuclei, electrons, and photons. This means the world was a very different
place when the temperature of the universe had photons with energy E ∼ 10 eV: you can’t form
atoms and molecules if the electrons and nuclei don’t stay stuck together!
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Indeed, the origins of the CMB are from the very period where the Universe transitioned from a
plasma of free electrons and nuclei into a collection of neutral hydrogen atoms. In the plasma phase,
any photon floating through the Universe will quickly get absorbed by a passing nucleus or electron,
while other photons will be emitted. It is a constant dance of emission and absorption of particles.
Once the protons and neutrons bind up into neutral atoms, however, the transient photons no longer
“see” any charged particles to scatter off of or be absorbed by: this results in the release of a burst of
photons that we now see as the CMB. Given our current theory of how nuclei and electrons interact
with photons, we can make precise predictions of what the CMB should look like and compare with
data.

3.2.2 Big Bang Nucleosynthesis

Let’s rewind further. The protons and nuclei, which are non-relativistic during this time, simply
become more densely packed as the Universe contracts, whereas the photons continue to become
more energetic. At a certain point, the photon energy increases so that the characteristic energy is ∼
MeV. This happens to be the energy required to eject a proton or neutron from a nucleus. Therefore,
as we proceed to earlier times, the collisions of photons with atomic nuclei splits them apart into
their constituent protons and neutrons. We therefore end up with a hot bath of unbound protons,
neutrons, electrons, and photons. Note that this is basically the same thing as the CMB time period,
except we are now talking about nuclei splitting apart or re-assembling (vs. atoms).

The process by which free protons and neutrons fused into nuclei in the early Universe is called Big
Bang Nucleosynthesis (BBN). As with the CMB, we can take our theories and make predictions
about the outcome of BBN: for instance, the ratio of hydrogen to helium in the Universe. If there are
new particles or forces beyond the ones we know about, this can alter the process of BBN and give a
very different looking Universe. Indeed, our measurements of BBN (and the CMB) provide powerful
evidence for the existence of new particles beyond the ones we know about (dark matter), and place
stringent constraints on new forces that can interact with us. This gives a rough illustration of how
we can use our “rewound” knowledge of the Universe to learn more about the fundamental particles
in nature.

3.2.3 The Production of Antimatter

Around the same time as BBN (or perhaps a bit earlier), the bath of photons becomes sufficiently
energetic to allow a new type of process: the production of antiparticles. Here, I’m talking specifi-
cally about the production of electron-positron pairs in photon collisions. The electron mass is about
me = 511 keV/c2, and so in a collision of γγ → e+e−, then (in the centre-of-mass frame) each photon
must have above 511 keV in order to produce the e+e− pair. This means that electrons and positrons
are copiously produced once the Universe contracts to a sufficiently small size (and hence the photons
have a large enough energy).

Exercise: Draw all Feynman diagrams for the process γγ → e+e−. Why is the process γ → e+e− not
allowed?

As we go back further in time, the plasma heats up even more. When the characteristic energy
of the particles in the Early Universe becomes much larger than mec

2, the electrons also become
relativistic. Recall that the relativistic boost factor for electrons is

γ ≡ E

mec2
, (14)
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and so γ � 1 for E � mec
2. So, at early times, even the “matter” particles like electrons (and,

even earlier protons) are part of the radiation of the universe. As a result, the changing size of the
Universe also blueshifts the electron energy under contract once they are relativistic (or, we play the
Universe’s expansion the right way around, redshifts them). At even earlier times, the protons are
sufficiently energetic enough that they blast each other apart into their constituent quarks.

Eventually in our time travel back through the history of the Universe, we find that the Universe
was made up of a hot, dense plasma consisting of every particle in the Standard Model. The heaviest
particle in the Standard Model is the top quark, mt = 173 GeV/c2, and so once the typical energy of
photons, electrons, and other particles is larger than 175 GeV, the Universe is filled with every type
of particle of which we are currently aware, and perhaps some that we currently know nothing about!
We are curious about how these new types of particles can affect the evolution of the Universe.

4 Thermodynamics in the Early Universe

In the last section, we saw that the presence of interactions such as γγ → e+e− means that a hot,
dense collection of photons will eventually lead to the production of electrons and positrons, as well as
every other type of particle in the Standard Model (or, at least for any species such that Eγ > Mc2).
In this section, we explore some of the implications of these processes, and will find that these huge,
complicated collections of particles can in fact be characterized by just a few properties, such as the
temperature. This is similar to how a room full of air contains > 1024 molecules, and yet can be
simply described in terms of number density, volume, temperature, and pressure. The reason why
this simplification is possible is because the individual behaviours of particles average out over the
entire collection, allowing the system as a whole to be characterized by just a few numbers. At the
beginning of our study, we neglect the background effects of the expansion of the Universe. Once we
have seen the general idea of the thermodynamics of the Early Universe on its own, we will restore
the expansion to see how it affects this gas or plasma of particles.

4.1 A Non-Expanding Universe

4.1.1 Chemical and Kinetic Equilibrium

Let’s conduct a thought experiment and suppose that we start off in a non-expanding Universe
consisting entirely of photons with typical energy E > Mec

2. This means that, when the photons
collide, they can produce e+e− pairs. Each collision depletes two of the photons and, in their place,
produces an electron-positron pair. If we started with Nγ photons and 0 electrons or positrons, then
after a single collision we have Nγ − 2 photons, 1 electron, and 1 positron. We don’t really have
to worry about the reverse process e+e− → γγ provided Nγ � 1, because there are many photons
that can convert into electron-positron pairs but almost no electron-positron pairs to go back into
photons. This process continues so that, after n collisions, we have Nγ − 2n photons, n electrons,
and n positrons.

It gets a bit tricker once n gets to be comparable to Nγ/2. When this occurs, we end up with a
situation where the e−e+ → γγ process becomes important. In general, all processes that can happen
in nature can also happen in reverse. In other words, if electron-positron pairs can be created, they
can also be destroyed.

Does the conversion of photons into e+e− pairs ever stop? The simple answer is no; any time a
photon happens to bump into another photon, there is a chance that they will create an e+e− pair.
Similarly, any time an e+e− pair collide, there is a chance they will create a pair of photons. However,
at a certain point the rate of forward reaction will equal the rate of reverse reaction; this configuration
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is known as chemical equilibrium. Short of any disruption to the system, the average numbers of
photons and electrons will not change from this point forward because the rate of production of e+e−

pairs via photon collisions is exactly equal to the rate of production of γγ pairs in e+e− collisions. If
we track individual photons, they may be destroyed, but if we only look at the total numbers, they
remain unchanging. Thus, we say that chemical equilibrium is characterized by

dNe−

dt
= 0 (15)

dNe+

dt
= 0 (16)

dNγ

dt
= 0. (17)

In general, chemical equilibrium implies that systems on the whole are not changing, and so time
derivatives of total or average quantities are zero.

We can draw a very simple mechanical analogy. Suppose we have an empty bucket with a hole
in the bottom. We now start pouring water at a rapid rate into the bucket. Because there isn’t
much water, the water pressure is low, and the tiny trickle of water out of the bottom of the bucket
cannot compensate for the large amount of water being poured in. As the bucket fills, however, the
water pressure starts rising, and at a certain point the outflow exactly equals the inflow. If we track
individual molecules of water, of course we will see a change: some of them drop into the bucket, swirl
around, or plummet out. But if we look at the surface of the bucket, it stays exactly level: the total
amount of water in the bucket stays the same. Nothing changes until we change the configuration of
the system (for example, by increasing the inflow, plugging up the hole, or changing the type of fluid
being poured into the bucket). There are many other examples we could think about: for example,
connecting an evacuated room with a room containing normal air and observing the flows of gas
molecules between them.

Returning to particle physics, the motions of particles do not depend only on the number of
particles. We also care about the momenta and positions of each particle. This seems troubling: if
we have 1010 particles in a particular volume that we are tracking, this (in principle) means that we
need to keep track of 6× 1010 quantities, namely the three components of the momentum vector and
the three components of the position vector. This is an impossible task! Fortunately, we will soon
see that there is another form of equilibrium that allows us to simplify our description of particle
energies. We also assume that the universe is homogeneous and isotropic (the same at every point
in space and in every direction), which is pretty consistent with our observations of the universe on
large scales and allows us to forget completely about the positions of particles. F

In addition to matter-antimatter creation/annihilation processes like γγ ↔ e+e−, there also exist
elastic collisions like e−γ → e−γ or e−e− → e−e−, which preserve the nature of each particle in the
collision but transfer momenta between particles. Imagine, for example, that we have two electrons
with momenta ~p1, ~p2 such that |~p1| � |~p2|. In this case, it is likely that they will collide in such a
way as to equalize the momenta between them. Thus, rapidly colliding particles tend to exchange
momenta in such a way as to give each one comparable momentum; it would be very unusual for a
large number of particles to collide and concentrate their collective momenta into a single particle!

If we wait long enough, once again the particles reach equilibrium. This time, it is called kinetic
equilibrium because we are referring to the distribution of kinetic energies in the particles. When in
kinetic equilibrium, an individual particle can change its momentum by bumping into other particles,
but the overall distribution of momenta does not change. We characterize the momentum spread
among the particles by a probability distribution that a single particle drawn at random has a given
momentum ~p. This probability distribution is referred to as the momentum distribution, F (|~p|),
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and is a function of the momentum ~p:

F (~p) dpx dpy dpz ∝ # particles with momentum [~p, ~p+ d~p), (18)

where the above relation holds up to a constant of proportionality that is defined by convention to
be (2π)−3. The total number of particles of the species can be found by integrating over all possible
momenta,

N =

∫ ∞
0

dpx dpy dpz
(2π)3

F (~p). (19)

Because we cannot count the total number of particles in the Universe, we are usually instead
interested in the number of particles per unit volume. This is denoted by n ≡ N/V . Similarly, we
define the momentum density distribution f(~p) ≡ F (~p)/V and have

n =

∫ ∞
0

dpx dpy dpz
(2π)3

f(~p). (20)

Typically, f(~p) does not depend on the direction of the momentum; the reason is that the Universe
is isotropic (looks the same in all directions), and so the system has equal probability of finding a
vector of magnitude |~p| ≡ p pointing in any direction. We therefore write instead f(~p) as a function of
the magnitude only, f(p). Switching to spherical polar coordinates and integrating over the angular
variables, we find

n =

∫ ∞
0

dp

2π2
p2 f(p). (21)

We see that p2 f(p) is (up to a normalization factor) the probability of finding a particle of momentum
magnitude p.

For a classical system with many rapid collisions, it turns out that f(p) takes on a universal form
regardless of the nature of the particles that are scattering. This function is called the Maxwell-
Boltzmann distribution and is characterized by a single number, T . T is the temperature and
characterizes the typical momentum (and hence kinetic energy) of particles in the system. We will use
units where T has dimensions of energy10, in which case f(p) ∝ e−E(p)/T and E(p) =

√
p2c2 +M2c4

is the relativistic energy-momentum relation. In particle physics, we often care about the collisions
for highly relativistic particles, p�Mc. Then, we have

p2 f(p) = C p2 e−pc/T . (22)

where C is a constant of proportionality that depends on various factors that are unimportant for the
time being. The shape of the Maxwell-Boltzmann distribution is shown in Fig. 5. The distribution
has a maximum at momenta comparable to T , and then there is a sharp exponential fall-off. This
is the result of the fact that thermodynamics likes particles to have all comparable energies and
momenta, and you pay an exponential penalty for trying to find a particle with energy or momentum
� T .

10One can pass between units of energy and the usual units of Kelvins by dividing by a fundamental constant called
the Boltzmann constant.
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Figure 5: The shape of the Maxwell-Boltzmann distribution for a highly relativistic particle. It
is evident that the distribution of particle momenta is peaked around p/T ∼ 2. The scale of the
y-axis is arbitrarily normalized since we are only interested in looking at the shape for now. For the
true Maxwell-Boltzmann distribution, the y-axis tells us something about the number density of the
particles.

4.1.2 Detour: Natural Units

If you’ve gotten this far and haven’t found any factors of c missing, then I should count myself very
lucky. The reality is that many of these factors are annoying to carry around: for instance, we have
to remember to divide E by c in the momentum 4-vector, and to multiply t by c in the position
4-vector. It would be simpler if we didn’t have to deal with them at all.

For this to work, we need to define a set of units where c = 1. It is perfectly reasonable to define
such a set of units, since c is the only fundamental constant that relates things like position and
time, or energy, momentum, and mass. If I say “The proton has a mass of 1.6× 10−10 J”, there is no
ambiguity as to my meaning, which more precisely is “The proton has a mass whose rest energy is
equal to 1.6× 10−10 J”. There is no ambiguity because mass and rest energy map onto one another
in a simple, one-to-one manner.

We call this natural units. In natural units, we set11

c = 1, (23)

~ = 1, (24)

where ~ is the reduced Planck’s constant, ~ = h/2π. Recall that Planck’s constant relates energy
and time,

E = hν, (25)

where ν is the frequency of light, and so using combinations of ~ and c it is possible to relate pretty
much all physical quantities to a single unit.

By convention, we choose the physical unit to be a unit of energy, and in particle physics we use
the energy unit of electron-volts (1 eV = 1.6 × 10−19 J). Using Eq. (25) and setting ~ = 1, we see
that time has units of inverse energy. Similarly, since distance is related to time via x0 = ct, we see
that distance also has a unit of inverse energy. Physical dimensions of length, time, etc. can be found

11For those who have studied statistical mechanics, we also set the Boltzmann constant kB = 1 in natural units.
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by remembering that ~ = c = 1 in natural units, so you can multiply or divide by ~ and c wherever
you like without changing the answer. Then, sub in the physical values ~ = 6.58× 10−25 GeV · s and
c = 3× 108 m to convert from natural units back into more familiar units.

Exercise: (a) A particle physicist tells you that the typical lifetime of a particle in its rest frame is
τ = 1014 GeV−1. What is this time in seconds? (b) In the lab frame, the particle has a speed v.
What is the typical decay length in the lab frame?

Exercise: (a) In natural units, we say “The wavelength of the photon is 1 MeV−1”. What do we
mean by this (in other words, translate the energy to a property of the wavelength). (b) In natural
units, we say “The momentum of particle A is 10 GeV”. What do we mean by this (in other words,
translate the energy to a property of the momentum)

4.1.3 Distributions in Thermal Equilibrium

When a species of particle is in both kinetic and chemical equilibrium, we say that it has reached
thermal equilibrium. Its properties are determined completely by the temperature of the system
and the mass of the species. While we cannot derive these results here, they may be familiar to
you if you have taken an introductory course in quantum mechanics. Because particles are quantum
phenomena, we must take into account their quantum behaviour. What is most relevant is whether
the particles are bosons, which means they have intrinsic angular momentum that is an integer
multiple of ~ (0, ~, 2~, etc.), or fermions, which have intrinsic angular momenta that are half-
integer multiples of ~ (~/2, 3~/2, etc.). Fermions obey the Pauli Exclusion Principle, which
means that two fermions cannot occupy the same quantum state. Electrons are fermions, and for
this reason they stack up in atomic orbital energy levels rather than all descending to the ground
state. By contrast, bosons like to join up in the same quantum state and tend to exhibit clumping
effects.

The probability distribution functions, f , which tell us how likely a particle is to have a given
energy or momentum, depend on whether the particle species is a boson or a fermion. In general,
for a species in thermal equilibrium we have

f(E, T ) =
1

eE/T ± 1
, (26)

where E is the particle energy, T is the temperature, the equation with the plus sign corresponds
to fermions and the equation with the minus sign corresponds to bosons. For a relativistic species,
E = p, and for p & T , we see that the quantum version of f reduces to the Maxwell-Boltzmann
distribution introduced in the previous section. What we find different here is the behaviour as
E → 0. For small energies, the distribution for bosons blows up, indicating the preference for bosons
to all exist in the same (ground) state. For fermions, we instead find the distribution is smaller than
the Maxwell-Boltzmann distribution for E → 0, indicating the dislike for fermions to occupy the
same state.

Note that Eq. (26) gives the distribution in terms of energy rather than momentum. These two
are in one-to-one correspondence, since we know that E =

√
p2 +M2 for a species of mass M . This

allows us to consider also the non-relativistic limit of particles, namely when the temperature T is
smaller than the mass energy of the particle. In this case, we have E ≈M + p2/2M and we see that

f(E, T ) ≈ e−M/T . (27)

The probability of finding the particle becomes exponentially suppressed as T � M . Why? Recall
that particles can be created from energy and can also annihilate into energy. When the mass energy
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of the species exceeds the typical energy of a particle in the system, the particles can annihilate away
but there is insufficient energy for them to be produced again by collisions of other particles. This
means that the number density of the heavy particle is steadily depleted by annihilations, with no
inverse processes to produce them. The result is an exponential depletion of the number density of
the heavy particles.

We can perform the integral12

n =

∫
dpx dpy dpz

(2π)3
f(E, T ) (28)

analytically in the relativistic and non-relativistic limits. The results for relativistic bosons and
fermions are

nB(T ) =
ζ(3)

π2
T 3, (29)

nF (T ) =
3ζ(3)

4π2
T 3, (30)

where ζ(x) is the Riemann zeta function. The results for non-relativistic bosons and fermions
are the same:

n(T ) =

(
MT

2π

)3/2

e−M/T . (31)

Thus, we see that the temperature of a system in thermal equilibrium fixes both the number density
of particles, as well as their typical momentum distributions.

4.1.4 The Approach to Equilibrium: Boltzmann Equations

If we wait long enough, we expect the Universe to settle into a state of thermal equilibrium. The
reason is that collision processes that produce and destroy particles, and re-distribute their momenta,
drive the particle distributions to their equilibrium values. Once equilibrium is reached, we expect
that the Universe is in a steady state: while particles are continually being created, destroyed, and
scattered, the overall distributions no longer change in time. This is a simple state of the Universe
to characterize.

However, if the Universe starts out in a non-equilibrium state, we can ask about the dynamics
that cause it to come into equilibrium. These might be important for determining how long it takes to
arrive at equilibrium, for example. In our thought experiment, we started with a Universe filled only
with photons. How long does it take to start producing appreciable numbers of electrons, positrons,
and other particles? Or, conversely, if we started with a Universe populated entirely of electrons and
positrons, how long would it take to fill with photons, quarks, etc?

In this section, we will explore a toy scenario where there exists a particle called X that can
decay into electron-positron pairs, X → e+e−. We will use this scenario to argue for the general
form of the rate equations that describe the approach to equilibrium. These equations are collectively
referred to Boltzmann Equations, and they often form the central objects of study in tracking the
abundances and properties of particles in the early Universe.

We define the rate of X production in the process e+e− → X in terms of a quantity γX ; this is the
number of X particles produced per unit volume per unit time assuming the electrons and positrons

12If you have seen statistical mechanics before, you may know that we actually need to multiply the number density
by the number of degrees of freedom by the species. We’ll ignore this subtlety for now.
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are in thermal equilibrium. We can write the change of the X number density due to production as

dnprodX

dt
= + γX . (32)

At the same time, the particle X decays to e+e− with lifetime τX . The lifetime is typically defined
such that, in time τX , the number of X particles decreases by a factor of 1/e. In this case, we have

dndecayX

dt
= − nX

τX
; (33)

in the absence of production of X, the solution to this equation would be nX(t) = nX(0)e−t/τ . In
practice, we have to take into account effects of relativistic time dilation but for now we will assume
that τX gives the relativistically corrected lifetime.

We can combine the production and decay into a single equation,

dnX
dt

= γX −
nX
τX

. (34)

We can factor this equation into a suggestive form:

dnX
dt

= − 1

τX
(nX − γXτX) . (35)

Notice that when nX = γX(t)τX , then dnX/dt = 0: the abundance does not change! This is, by
definition, the equilibrium abundance, since the system has reached a steady state. We can therefore
define γXτX ≡ neqX , and we have

dnX
dt

= − 1

τX

(
nX − neqX

)
. (36)

We already have an expression for the equilibrium abundance in terms of the system temperature in
Eq. (28). Thus, we can compute the X production rate in terms of the decay rate and equilibrium
abundance:

γX =
neqX
τX

. (37)

This seems like magic: by computing theX decay rate and knowing the general form of the equilibrium
number density, we can automatically find the X production rate without needing to calculate it from
first principles even if the system is not in equilibrium. What we are using is the fact that, once we
know that a state of equilibrium can exist and the rate of the destruction of X, we automatically
must know the rate of its creation as well. This principle is known as the Principle of Detailed
Balance and is generally very useful.

There is one final notation that we introduce. The quantity τX is, roughly speaking, how long it
takes for a typical X to decay. We can turn this instead into a rate of decays per unit time, ΓX , by
taking the reciprocal:

ΓX ≡
1

τX
, (38)

and so the final form of our Boltzmann equation is

dnX
dt

= −ΓX
(
nX − neqX

)
. (39)
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We can interpret it as follows: the destruction rate of X is ΓX , but this is balanced by the inverse
process. If nX > neqX , X will decay away until it is balanced by the inverse production processes.
Similarly, if we start too few X particles, they will be produced by e+e− → X until the production
rate is balanced by the decay rate.

We can now generalize this to any number of processes:

dnX
dt

= −(ΓX→A1B1 + ΓX→A2B2 + . . .)
(
nX − neqX

)
. (40)

This is valid as long as all the particles X can decay into are already in thermal equilibrium with
one another13. A limitation of the Boltzmann equations in this form is that they really only apply
when we have one species that is out of equilibrium, along with a large number of particles that are
in equilibrium with one another. Luckily, this is precisely the scenario in the early universe when all
SM particles formed a single equilibrium configuration with temperature T , and then we can imagine
one or two out-of-equilibrium species that make up, say, dark matter.

4.2 Particle Abundances in an Expanding Universe

In the last section, we had an in-depth discussion of the thermodynamics of particles in a static
Universe. Now, we return to the actual case of an expanding Universe. We immediately run into a
difficulty: equilibrium is defined by quantities that do not change with time, whereas we know that
the scale factor changes with time, ȧ(t) 6= 0. Thus, the expanding Universe is by definition not in
equilibrium!

Do we have to abandon all of the notions of equilibrium we just derived? Fortunately, we do
not. The reason is that SM processes are happening very quickly compared to the expansion of the
Universe; in other words, the rates of SM particle interactions exceeds the Hubble rate H. One way
to understand this is that the Hubble expansion occurs due to gravity, which is much weaker than
other SM forces. When the Universe expands a tiny bit, the “gas” of SM particles quickly adjusts
its temperature to account for the expansion and reaches a new steady state. We call this a quasi-
equilibrium approximation, because the Universe is never in true equilibrium, but it reaches an
approximate equilibrium at each moment in time.

One of the effects of the expansion is that the temperature of the system becomes time dependent.
The reason is that SM particles are typically relativistic at high temperature; as the Universe expands,
the particles are redshifted and lose energy. In fact, we find that during a typical epoch of the
Universe’s history,

T (t) ∝ 1

a(t)
. (41)

In an era where most SM particles are relativistic, we also can calculate the Hubble rate explicitly,

H =
1

2t
. (42)

The explicit relationship between temperature and time is

1

2t
= H(t) =

T 2

M0
, (43)

where M0 = 7× 1017 GeV is a constant related to the strength of the gravitational force.

13If this were not true, then there would be no unique temperature and so no single value of neq
X . As you can imagine,

this makes life considerably more difficult.
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So, one effect of the Universe’s expansion is a reduction in the temperature of the particles present
in the early Universe. This reduction in temperature in turn affects all the particle destruction rates
Γ, so these also become functions of temperature. Are there any other effects of the expansion?

In Section 3.1, we argued that the expansion also dilutes the number density of particles. Indeed,
we argued that

n(t) ∝ 1

a(t)3
∝ T 3. (44)

This means that the number density of our particle species not only changes due to scattering and
decays (which we modelled in Section 4.1.4), but also due to the expansion. We conjecture that the
change in the number density of a species X due to the Hubble expansion is(

dnX
dt

)
expansion

= −3HnX . (45)

I encourage you to substitute H = ȧ/a, solve this differential equation assuming no other interactions,
and show that nX satisfies the relation Eq. (44).

We can now write the full Boltzmann equation as

dnX
dt

= −3HnX − (ΓX→A1B1 + ΓX→A2B2 + . . .)
(
nX − neqX

)
. (46)

This is interesting, because we now see there are competing rates. If all of the scattering rates ΓX
are < H, then we can get an approximate solution by throwing away all of the terms proportional
to Γ. The resulting equation is simply dnX/dt = −3Hn: any amount of X that already exists gets
diluted by the expansion, but nothing else happens. The reason is that the universe is expanding
too quickly for any other particle interactions to have any effect.

By contrast, in the limit ΓX > H, we can to a good approximation neglect the term proportional
to H and recover the equations for a non-expanding spacetime. The result is that nX will track its
equilibrium distribution. The only effect of the expansion of spacetime is indirect: neqX depends on
T , which changes with the expansion.

The interesting physics happens when ΓX ∼ H, which is when the equilibrium condition is
marginally satisfied; we find that particles come into or go out of equilibrium at stages of the Uni-
verse’s history when its expansion rate equals particle production and destruction rates!

Eq. (46) is appealing because it explicitly lays out all the physical processes happening in the
expanding early Universe and allows us to see the competition between them. In practice, it is
unnecessarily complicated in terms of trying to solve the equation. The reason is that we already
know what the effect of the expansion is: it simply reduces the abundance by a factor of 1/a3! So we
don’t need to re-solve this part of the equation every time we want to solve the Boltzmann equation.

To address this, we exchange the number density for a dimensionless quantity that more simply
captures the dilution effect of the expansion. We define something known as the yield:

YX(t) ≡ C nX(t) a(t)3, (47)

where C is a normalization constant14. Upon taking a time derivative, we get

ẎX = C
(
ṅX a

3 + nX 3a2ȧ
)

(48)

= C (ṅX + 3HnX) a3. (49)

14For those who have taken statistical mechanics, it is conventional to choose C such that the yield is the number
density divided by the entropy density of the system. This is a convenient normalization because entropy is typically
conserved under the effects of the expansion of the universe, and consequently the entropy density scales like a−3.
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Substituting this into Eq. (46), we find a simplification of the Boltzmann equation with this new
choice of function:

dYX
dt

= −(ΓX→A1B1 + ΓX→A2B2 + . . .)
(
YX − Y eq

X

)
. (50)

This has a simpler form because we have already included the effect of the Universe’s expansion on
the X number density. Indeed, we see that if ΓX is negligible, then YX is approximately constant.
The reason that this works is that the decrease in nX ∝ a−3 from Hubble expansion is cancelled by
the factor of a3 in the definitino of yield. An additional advantage of using YX is that, because the
effects of the expansion are already removed from its evolution, we can directly compare values of Y
from different periods in the universe’s history without needing to worry about how distances in the
universe have changed over time.
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